Serena Software (1989). PCMODEL. Molecular Modeling Sofiware for IBM XT/AT and Compatibles. Version 4.0. Serena Software. Bloomington, Indiana. USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin. USA.
Stanković, S.. Ribár, B.. Miljković. D.. Gaši, K. \& Courscille, C. (1989). Acta Cryst. C45, 491-495.

Vicković, I. (1988). CSU. Crystal Structure Utiliṭy Program. University of Zagreb, Croatia.

Acta Cryst. (1998). C54, 1968-1970

Two 1-(Arylacetyl)-2-(aminomethyl)piperidine Derivatives, a Novel Class of Highly Selective $\boldsymbol{\kappa}$-Opioid Analgesics

Oswald M. Peeters, Dorota Jamroz, Norbert M. Blaton and Camiel J. De Ranter
Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium. E-mail: maurice.peeters@farm.kuleuven. ac.be

(Received 8 May 1998; accepted 10 June 1998)

Abstract

The single-crystal X-ray structures of $(+)-1-\{(2 R)-$ 1-[(3,4-dichlorophenyl) acetyl] piperidin-2-ylmethyl $\}$ pyrrolidinium chloride monohydrate $\left(\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}^{+}\right.$.-$\left.\mathrm{Cl}^{-} . \mathrm{H}_{2} \mathrm{O} ; \mathrm{BRL}-52536 \mathrm{~A}\right)$ and $(-)-1-\{(2 S)-1-[(3,4-\mathrm{di}-$ chlorophenyl)acetyl]piperidin-2-ylmethyl $\}$ piperidinium chloride $\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}^{+} . \mathrm{Cl}^{-}\right.$; BRL-52781A) have been determined. BRL-52536A is the inactive stereoisomer of BRL-52537A, the highly selective and potent lead compound of the series. The pharmacophore N -$\mathrm{C}-\mathrm{C}-\mathrm{N}_{s p^{2}}$ torsion angle is $(+)$-synclinal in the $2 S$ configuration.

Comment

Over the last decade, κ-opioid agonists have received increased interest as possible safe and effective analgesics for the treatment of acute and chronic pain (Rees, 1992). Vecchietti et al. (1991) described the synthesis and structure-activity relationships as κ-opioid analgesics of a novel class of 1-(arylacetyl)-2-(aminomethyl)piperidine derivatives. Antinociceptive activity and κ affinity were found to be extremely enantiospecific since only compounds with the $2 S$ configuration displayed significant activity. Futhermore, it was
concluded from computational studies and ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis (Vecchietti et al., 1991) that the pharmacophore $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}_{s p}$: torsion angle should be ca 60° in a low energy conformation. In order to confirm these results the crystal structures of two members of the series were determined, namely, $(+)-1-\{(2 R)-1-[(3,4-\mathrm{di}-$ chlorophenyl)acetyl]piperidin-2-ylmethyl $\}$ pyrrolidinium chloride monohydrate (BRL-52536A) and (-)-1-\{(2S)-1-[(3,4-dichlorophenyl)acetyl]piperidin-2-ylmethyl\} piperidinium chloride (BRL-52781A).

BRL-52781A

The bond lengths do not display outstanding features. The internal angles of the phenyl ring reflect the substitution pattern (Domenicano \& Murray-Rust, 1979). The piperidine ring has a chair conformation slightly flattened towards an envelope conformation, with the flap at C 12 , resulting in an enlarged $\mathrm{C} 13-$ C14-C15 angle. The 2 -substituent is in an axial position and in a syn conformation with respect to the carbonyl O atom. The global conformation of the molecules is futher determined by the torsion angles $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8, \mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 10, \mathrm{~N} 10-\mathrm{C} 15-$ C16-N17 and C15-C16-N17-H17. In both crystal structures, the pharmacophore $\mathrm{N} 10-\mathrm{Cl5}-\mathrm{Cl} 6-$ N17 torsion angle and the C15-C16-N17-H17 torsion angle are synclinal, confirming the computational results. The observed conformation is probably a result of the electronic attraction between the charged N atom and the carbonyl group. The dihedral angle between the least-squares planes of the phenyl and amido groups is $101.0(1)$ and $97.1(1)^{\circ}$ in BRL-52536A and BRL-52781A, respectively, indicating perpendicularity of the two planes. In both structures, the Cl^{-} anion is hydrogen bonded to N 17 [$\mathrm{N} 17 \ldots \mathrm{Cl} 3.098$ (3) and $3.097(2), \mathrm{H} 17 \cdots \mathrm{Cl} 2.22$ and $2.21 \AA$, and N17$\mathrm{H} 17 \cdots \mathrm{Cl} 162$ and 166°, for BRL-52536A and BRL-

52781 A , respectively]. In BRL-52536A, the Cl^{-}anion is also hydrogen bonded to the $\mathrm{H}_{2} \mathrm{O}$ molecule $[\mathrm{O} \cdots \mathrm{Cl}$ $3.137(3), \mathrm{HIO} \cdots \mathrm{Cl} 2.32 \AA$ and $\mathrm{O}-\mathrm{HIO} \cdots \mathrm{Cl} 137^{\circ}$].

Fig. 1. View of BRL-52536A with atom labels. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. View of BRL-52781A with atom labels. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

Samples of the title compounds were gifts from SmithKline Beecham Pharmaceuticals. The syntheses have been described by Vecchietti et al. (1991). The crystals used in the diffraction experiments were obtained by slow evaporation at room temperature from methanol-ethyl acetate solutions.

BRL-52536A

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}^{+} . \mathrm{Cl}^{-} . \mathrm{H}_{2} \mathrm{O}$
$M_{r}=409.77$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54184 \AA$

Monoclinic
$P 2$,
$a=6.8417$ (4) \AA
$b=10.2086(5) \AA$
$c=14.6099(8) \AA$
$\beta=101.574$ (5) ${ }^{\circ}$
$V=999.67(9) \AA^{3}$
$Z=2$
$D_{x}=1.361 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ four-circle
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (XEMP; Siemens, 1989)
$T_{\text {min }}=0.320, T_{\text {max }}=0.653$
2603 measured reflections
2034 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.103$
$S=1.041$
2034 reflections
227 parameters
H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0540 P)^{2}\right.$
$+0.2242 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.28 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3}$
Cell parameters from 39 reflections
$\theta=10.70-27.89^{\circ}$
$\mu=4.260 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block
$0.45 \times 0.15 \times 0.10 \mathrm{~mm}$ Colourless

1941 reflections with

$$
F^{2}>2 \sigma\left(F^{2}\right)
$$

$R_{\text {int }}=0.049$
$\theta_{\text {max }}=67.46^{\circ}$
$h=-1 \rightarrow 8$
$k=-1 \rightarrow 12$
$l=-17 \rightarrow 17$
3 standard reflections every 100 reflections intensity decay: none

Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.0051 (9)

Scattering factors from International Tables for X-ray Crystallography (Vol. IV)
Absolute structure:
Flack (1983)
Flack parameter $=0.00(2)$

Table 1. Selected torsion angles $\left(^{\circ}\right)$ for BRL-52536A

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8$	$101.3(4)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$76.1(4)$
$\mathrm{C} 4-\mathrm{C} 7-\mathrm{C}-\mathrm{N} 10$	$-179.4(3)$	$\mathrm{N} 10-\mathrm{C} 15-\mathrm{C} 16-\mathrm{N} 17$	$-63.5(4)$
$\mathrm{O} 9-\mathrm{C} 8-\mathrm{N} 10-\mathrm{C} 15$	$-3.9(5)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{N} 17-\mathrm{H} 17$	57.6

BRL-52781A

Crystal data
$\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}^{+} . \mathrm{Cl}^{-}$
$M_{r}=405.77$
Orthorhombic
$P 2 \mid 2$, 2 ,
$a=7.0585$ (6) \AA
$b=7.0673$ (4) \AA
$c=40.530(2) \AA$
$V=2021.8(2) \AA^{3}$
$Z=4$
$D_{x}=1.333 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.348 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in n-heptane $/ \mathrm{CCl}_{4}$

Data collection

Siemens P4 four-circle diffractometer
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54184 \AA$
Cell parameters from 42 reflections
$\theta=11.76-27.98^{\circ}$
$\mu=4.170 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block
$0.40 \times 0.24 \times 0.20 \mathrm{~mm}$
Colourless

2065 reflections with
$F^{2}>2 \sigma\left(F^{2}\right)$
$\omega / 2 \theta$ scans
Absorption correction:
ψ scan (XEMP; Siemens, 1989)
$T_{\text {min }}=0.153, T_{\text {max }}=0.434$
3011 measured reflections
2162 independent reflections
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=69.41^{\circ}$
$h=-1 \rightarrow 8$
$k=-1 \rightarrow 7$
$l=-1 \rightarrow 49$
3 standard reflections every 100 reflections intensity decay: none

Extinction correction: SHELXL93 (Sheldrick. 1993)

Extinction coefficient: 0.0041 (3)

Scattering factors from International Tables for X-ray Crystallography (Vol. IV)
Absolute structure:
Flack (1983)
Flack parameter $=-0.03(2)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.097$
$S=1.059$
2721 reflections
227 parameters
H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0492 P)^{2}\right.$
$+0.3240 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.15 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.14 \mathrm{e}^{-3}$
Table 2. Selected torsion angles $\left({ }^{\circ}\right)$ for BRL-52781A

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8$	$15.9(4)$	$\mathrm{C} 13-\mathrm{Cl} 4-\mathrm{C} 15-\mathrm{C} 16$	$-73.7(3)$
$\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 10$	$77.2(3)$	$\mathrm{N} 10-\mathrm{C} 15-\mathrm{Cl} 6-\mathrm{N} 17$	$53.4(3)$
$\mathrm{O} 9-\mathrm{C} 8-\mathrm{N} 10-\mathrm{C} 15$	$-1.3(4)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{N} 17-\mathrm{H} 17$	-65.9

The title structures were solved by direct methods and refined by full-matrix least squares on F^{2} for all reflections. H atoms were placed geometrically, and refined with a riding model and with $U_{\text {iso }}$ constrained to be $1.25 U_{\text {eq }}$ of the carrier atom.

For both compounds, data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structures: SIR92 (Altomare et al., 1994); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: PARST (Nardelli, 1983).

We thank Dr Giuseppe Giardina of SmithKline Beecham SpA, Baranzate di Bollate, Italy, for kindly supplying samples of BRL-52536A and BRL-52781A.

[^0]
References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Bergerhoff, G. ([996). DIAMOND. Visual Crystal Information S.stem. University of Bonn, Germany.
Domenicano, A. \& Murray-Rust, P. (1979). Tetrahedron Lett. 24. 2283-2286.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Rees, D. C. (1992). Prog. Med. Chem. 29, 109-139.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Siemens (1989). XEMP. Empirical Absorption Correction Program. Siemens Analytical X-ray Instruments Inc., Madison. Wisconsin. USA.
Siemens (1996). XSCANS. X-ray Single Crustal Analysis Software. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison. Wisconsin, USA.
Vecchietti, V., Giordani, A.. Giardina, G., Colle, R. \& Clarke, G. D. (1991). J. Med. Chem. 34, 397-403.

Acta Cryst. (1998). C54, 1970-1974

(4-Methoxyphenyl)diphenylmethanol, an Unusual Tetramer Containing a $D[R]$ Pattern of Hydrogen Bonds, and Tris(2-methoxyphenyl)methanol

Iain L. J. Patterson, ${ }^{a}$ Christopher Glidewell ${ }^{a}$ and George Ferguson ${ }^{b}$
${ }^{a}$ School of Chemistry, University of St Andren's, St Andreu's, Fife KYI6 9ST, Scotland, and ${ }^{\text {b }}$ Department of Chemistry. and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1.E-mail: cg@st-andrens.ac.uk

(Received 12 June 1998; accepted 9 July 1998)

Abstract

(4-Methoxyphenyl)diphenylmethanol $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2}\right)$ crystallizes with two independent molecules; the molecules are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into centrosymmetric tetramers in which two molecules form a cyclic $R_{2}^{2}(16)$ motif from which the other two are pendant, giving a $D_{3}^{3}(11)\left[R_{2}^{2}(16)\right]$ pattern. In tris(2-methoxyphenyl)methanol $\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{4}\right)$ the hydroxy H atoms are disordered over two sites; whichever site is occupied, an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is formed with a methoxy O atom.

Comment

Triphenylmethanol, $\mathrm{Ph}_{3} \mathrm{COH}$, crystallizes as almost perfectly tetrahedral tetramers (Ferguson et al., 1992), in which the four hydroxy-H atoms are mobile over 12 sites along the six $\mathrm{O} \cdots \mathrm{O}$ edges of the tetrahedron (Aliev et al., 1998). By contrast, tris(4-methoxyphenyl)methanol [$\left.\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{COH}\right]$ forms an open dimer in which only one of the two independent hydroxy groups is involved in hydrogen bonding (Ferguson et al., 1996). In view of the major differences in supramolecular aggregation between $\mathrm{Ph}_{3} \mathrm{COH}$ and (4$\left.\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{COH}$, we have now investigated the structures of (I) (4-methoxyphenyl)diphenylmethanol [(4$\left.\left.\mathrm{MeOC}_{6} \mathrm{H}_{4}\right) \mathrm{Ph}_{2} \mathrm{COH}\right]$ and (II) tris(2-methoxyphenyl)methanol [(2-MeOC $\left.\left.{ }_{6} \mathrm{H}_{4}\right)_{3} \mathrm{COH}\right]$.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1373). Services for accessing these data are described at the back of the journal.

